The Future of Software and Software Research: Panel Summary

Where Are We Now?

- Tremendous gains in productivity
- Successful adaptation to new computational models
 - batch vs. interactive
 - distributed
- Ability to easily develop 100,000+ LOC systems
- SW accepted part of safety-critical applications
- Repeatable best practices for many classes of systems
 - automated solutions for limited domains

Why Can't We Declare Victory?

- Pervasiveness of SW
 - critical infrastructure relies on SW
- Rapid pace of change
 - computational models, technology, marketplace
- Increasing expectations
 - systems of systems, massive concurrency, global connectedness, self-adapting systems, unpredictable integration requirements
- New componentry is poorly-understood
 - COTS, autonomous agents
- Slow adoption of best practices

Challenges

- Adaptability
- Distribution and concurrency
- Expect and cope with failure
- Platform heterogeneity
- Change propagation
- Component portability
- Program scale
- Richer computing environments
- Integration

Software Development in Tomorrowland

- Wide-ranging computing environment
- Ever-persistent legacy components
- Rapid development and experimentation
- Wide-ranging modalities
 - speech, real-world sensors, location-aware
- Multi-disciplinary, geographically-distributed developers
 - Stronger domain and business models, involves biologist, psychologists, end-users, team-building aids
- Analysis automated support
 - agents, design critics, software models, semantics-aware tools
- Persistent, common, refreshable knowledge

Research Strategies

- Rework / development SE techniques that are
 - value-conscious, people-conscious, change aware, non-uniformly applied
- Conduct large-scale empirical evaluation
 - systems that involve people modeling human interaction
 - software archeology
- Incorporate meta-qualities into development languages
 - trust management, security, power mgmt., timeliness
- Study actual development processes
 - collaborative s/w development
- Leverage increase in machine power

Research Strategies (cont.)

- Bridge gap between design and code
 - Make design/designer a first-class object (CAD/CAM)
 - Domain-specific models
- Explore new paradigms
 - biological, economic
- User-accessible techniques
 - Multi-stakeholder specification techniques
 - Safe end-user programming
- Improved SE education and training techniques
 - accelerated learning immersive techniques
 - multiple levels of IT personnel
- Science of components and integration

Why we need \$5B per year

- Ambitious, broad research agenda
- Need to scale up our research to match new scale of SW
- Need large-scale, multi-domain testbeds
 - SW archeology
 - need many artifacts: reqs., designs, code, test cases, test case outputs,
 CMS logs
 - Sponsor open-source software projects as a research enabler
 - Encourage sponsored projects to instrument
- Industry pilot projects for promising research technology
- interdisciplinary projects
- Collaborating with other gov't funded research
 - physics, bio, other gov't contractors, etc.
- Need larger research staff
- Must produce more professionals

The Future (all this for **only** \$5B)

- Quality S/W solutions for complex domains such as:
 - battlefield control
 - power grid mgmt
 - automobile traffic management
 - interconnected medical devices
 - emergency services
 - crisis management
 - etc.
- with the following properties
 - affordable
 - reliable, safe
 - easy to change/ very long-lived
 - useable
 - improves quality of life (QoL)
 - etc.